磁光克爾效應(yīng)作為表面磁學(xué)的重要實(shí)驗(yàn)手段,已被廣泛應(yīng)用于磁有序、磁各向異性、多層膜中的層間耦合以及磁性超薄膜間的相變行為等問題的研究。磁光克爾法是測(cè)量材料特性特別是薄膜材料物性的一種有效方法。本文較詳細(xì)的介紹了磁光克爾效應(yīng)的原理,測(cè)量方法以及磁光克爾法的實(shí)驗(yàn)裝置,也介紹了實(shí)驗(yàn)裝置中的儀器的特點(diǎn)。后較為詳細(xì)的介紹了磁光克爾法測(cè)量NiMn多層薄膜的磁滯回線的實(shí)驗(yàn)結(jié)果可以看出NiMn多層薄膜有明顯的磁滯行為,反應(yīng)了NiMn多層薄膜的鐵磁特性。
簡(jiǎn)介
在1845年,Michael Faraday首先發(fā)現(xiàn)了磁光效應(yīng),他發(fā)現(xiàn)當(dāng)外加磁場(chǎng)加在玻璃樣品上時(shí),透射光的偏振面將發(fā)生旋轉(zhuǎn)的效應(yīng),隨后他在外加磁場(chǎng)之金屬 表面上做光反射的實(shí)驗(yàn),但由于他所謂的表面并不夠平整,因而實(shí)驗(yàn)結(jié)果不 能使人信服。1877年John Kerr在觀察偏振化光從拋光過(guò)的電磁鐵磁極反射出來(lái)時(shí),發(fā)現(xiàn)了磁光克爾效應(yīng)(magneto-optic Kerr effect)。1985年Moog和 Bader兩位學(xué)者進(jìn)行鐵超薄膜磊晶成長(zhǎng)在金單晶(100)面上的磁光克爾效應(yīng)做了大量實(shí)驗(yàn),成功地得到一原子層厚度磁性物質(zhì)之磁滯回線,并且提出了以SMOKE(surface magneto-optic Kerr effect的縮寫)來(lái)作為表面磁光克爾效應(yīng),用以表示應(yīng)用磁光克爾效應(yīng)在表面磁學(xué)上的研究。由于此方法致磁性解析靈敏度達(dá)一原子層厚度,且儀器配置合于超高真空系統(tǒng)之工作,因而成為表面磁學(xué)的重要研究方法。 表面磁光克爾效應(yīng)實(shí)驗(yàn)系統(tǒng)是表面磁性研究中的一種重要手段,它在磁性超薄膜的磁有序、磁各向異性、層間耦合和磁性超薄膜的相變行為等方面的研究中都有重要應(yīng)用。應(yīng)用該系統(tǒng)可以自動(dòng)掃描磁性樣品的磁滯回線,從而獲 得薄膜樣品矯頑力、磁各異性等方面的信息。
表面磁光克爾效應(yīng)(surface magneto-optic Kerr effect,縮寫為SMOKE)作為表面磁學(xué)的重要實(shí)驗(yàn)手段,已被廣泛應(yīng)用于磁有序、磁各向異性、多層膜中的層間耦合以及磁性超薄膜間的相變行為等問題的研究.自1985年代以來(lái)相繼出現(xiàn)了多種SMOKE實(shí)驗(yàn)方案.由于SMOKE要求能夠達(dá)到單原子層磁性檢測(cè)的靈敏度,因此對(duì)于光源和檢測(cè)手段提出了很高的要求.目前上比較常見的是用輸出功率很穩(wěn)定的偏振激光器.如Bader等人采用的高穩(wěn)定度偏振激光器,其穩(wěn)定度小于0.1。也有用Wollaston棱鏡分光的方法,降低對(duì)激光功率穩(wěn)定度的要求.Chappert等人的方案是將從樣品出射的光經(jīng)過(guò)Wollaston棱鏡分為I和P偏振光,再經(jīng)過(guò)測(cè)量它們的比值來(lái)消除光強(qiáng)不穩(wěn)定造成的影響.但這種方法的背景信號(hào)非常大,對(duì)探測(cè)器以及后級(jí)放大器的要求很高.也有人采用普通的氦氖激光器在起偏器后加分光鏡,將信號(hào)分為信號(hào)光束和參考光束,通過(guò)測(cè)量二者的比值來(lái)消除由于激光器光強(qiáng)和偏振面不穩(wěn)定造成的影響.本文給出的SMOKE新型測(cè)量系統(tǒng),采用更為普通的半導(dǎo)體激光器作光源,用常見硅光電池進(jìn)行克爾信號(hào)的采集,同樣成功地得到了磁滯回線,且整個(gè)系統(tǒng)有較高的檢測(cè)靈敏度。因此,它是一種普適方案,在一些科研機(jī)構(gòu)和大學(xué)近代物理實(shí)驗(yàn)室使用后,均取得了良好的實(shí)驗(yàn)效果。
磁光信息存儲(chǔ)是近年發(fā)展起來(lái)的新技術(shù),是對(duì)傳統(tǒng)信息存儲(chǔ)技術(shù)的革新。開發(fā)更多、性能更加*,而且實(shí)用的磁光介質(zhì)材料是當(dāng)前信息存儲(chǔ)領(lǐng)域的一項(xiàng)重要的任務(wù)。測(cè)量磁光介質(zhì)的克爾轉(zhuǎn)角則是研究這些材料的基本手段和方法。對(duì)于非開發(fā)人員來(lái)講,測(cè)量磁光克爾轉(zhuǎn)角的實(shí)驗(yàn)一方面能夠提高進(jìn)行物理綜合實(shí)驗(yàn)的能力,另一方面對(duì)信息存儲(chǔ)的新技術(shù)將有更加深刻的理解,能啟發(fā)他們利用物理原理在信息存儲(chǔ)技術(shù)等領(lǐng)域提出新的設(shè)想,做出新的貢獻(xiàn)。
光學(xué)中的磁光克爾效應(yīng)
當(dāng)一束單色線偏振光照射在磁光介質(zhì)薄膜表面時(shí),部分光線將發(fā)生透射,透射光線的偏振面與入射光的偏振面相比有一轉(zhuǎn)角,這個(gè)轉(zhuǎn)角被叫做磁光法拉第轉(zhuǎn)角(θF).而反射光線的偏振面與入射光的偏振面相比也有一轉(zhuǎn)角,這個(gè)轉(zhuǎn)角被叫做磁光克爾轉(zhuǎn)角(θk),這種效應(yīng)叫做磁光克爾效應(yīng).磁光克爾效應(yīng)包括三種情況:(1)縱向克爾效應(yīng),即磁化強(qiáng)度既平行于介質(zhì)表面又平行于光線的入射面時(shí)的克爾效應(yīng);(2)極向克爾效應(yīng),即磁化強(qiáng)度與介質(zhì)表面垂直時(shí)發(fā)生的克爾效應(yīng);(3)橫向克爾效應(yīng),即磁化強(qiáng)度與介質(zhì)表面平行時(shí)發(fā)生的克爾效應(yīng).。
磁光克爾轉(zhuǎn)角的測(cè)量方法
對(duì)于已經(jīng)寫入了信息的磁光介質(zhì),要讀出所寫的信息則需要利用磁光克爾效應(yīng)來(lái)進(jìn)行.具體方法是:將一束單色偏振光聚焦后照射在介質(zhì)表面上的某點(diǎn),通過(guò)檢測(cè)該點(diǎn)處磁疇的磁化方向來(lái)辨別信息的"0"或"1"。例如,被照射的點(diǎn)為正向磁化,則在該點(diǎn)的反射光磁光克爾轉(zhuǎn)角應(yīng)為+θk,相反被照射的點(diǎn)為反向磁化,則在該點(diǎn)的反射光磁光克爾轉(zhuǎn)角應(yīng)為-θk。因此,如果偏振分析器的軸向恰好調(diào)整為與垂直于記錄介質(zhì)的平面成θk夾角,那么在介質(zhì)上反向磁化點(diǎn)的反射光線將不能通過(guò)偏振分析器,而在介質(zhì)的正向磁化處,反射光則可以通過(guò)偏振分析器。這表明反射光的偏振面旋轉(zhuǎn)了2θk的角度.這樣,如果我們?cè)诮?jīng)過(guò)磁光介質(zhì)表面反射的光線后方,在通過(guò)偏振分析器后的光路上安放一光電檢測(cè)裝置(例如光電倍增管),就可以很方便地辨認(rèn)出反射點(diǎn)是正向磁化還是反向磁化,也就是完成了"0"和"1"的辨認(rèn).可見,磁光克爾轉(zhuǎn)角在磁光信息讀出時(shí)扮演著十分重要的角色.如果把磁光介質(zhì)附著在可旋轉(zhuǎn)的圓盤表面,就構(gòu)成了磁光盤.磁光盤旋轉(zhuǎn)時(shí),如果同時(shí)有單色偏振光聚焦在磁光盤表面,就可實(shí)現(xiàn)光線的逐點(diǎn)掃描,即信息被連續(xù)讀出。
磁光克爾轉(zhuǎn)角的測(cè)量裝置
在實(shí)際測(cè)量時(shí),通常采用He-Ne激光作為光源,波長(zhǎng)λ=632.8 nin.磁光介質(zhì)樣品安放在電磁鐵建立的磁場(chǎng)之中,磁場(chǎng)的磁感應(yīng)強(qiáng)度為4 000 Gs左右.在此條件下,通過(guò)偏振分析器可順利地分析出磁光克爾轉(zhuǎn)角θk的大小,如果測(cè)量時(shí)光信號(hào)十分微弱,采用鎖相放大器可大大提高測(cè)量的精﹡度。
磁光介質(zhì)材料極其θk的大小
隨著磁光信息存儲(chǔ)技術(shù)的發(fā)展,目前已經(jīng)開發(fā)出多種磁光介質(zhì)材料.在這些材料中比較優(yōu)﹡的有:非晶態(tài)稀土一過(guò)渡金屬合金材料(例如Fe-co)、非晶態(tài)錳鉍鋁硅(MnBiA1Si)合金材料和非晶態(tài)錳鉍稀土(MnBiRE)合金材料等。這些材料通常是采用真空蒸鍍、磁控濺射等方法將合金材料沉積于玻璃基底上,磁光薄膜的厚度一般在幾百納米左右。為了提高材料的磁光性能,采取多層膜技術(shù)十分有效.磁光克爾轉(zhuǎn)角一般并不大,以鋱鐵鈷(1bFeco)合金薄膜材料為例,在室溫下其磁光克爾轉(zhuǎn)角僅為0.3L右。MnBiA1Si的磁光克爾轉(zhuǎn)角可達(dá)2.04。如果僅考慮磁光克爾轉(zhuǎn)角的大小,采用簡(jiǎn)單工藝制備的MnBi合金薄膜的磁光克爾轉(zhuǎn)角達(dá)到1.6。左右并不困難.當(dāng)然,在實(shí)際制造磁光盤時(shí),除了考慮磁光克爾轉(zhuǎn)角這一性能外,還需要綜合考慮其他性能.目前市場(chǎng)上做成磁光盤產(chǎn)品的磁光介質(zhì)以鋱鐵鈷(1bFeco)合金薄膜材料為主。
物質(zhì) | 科爾轉(zhuǎn)角(度) |
Fe | 0.87 |
Co | 0.85 |
Ni | 0.19 |
Gd | 0.16 |
Fe3O4 | 0.32 |
MnBi | 0.7 |
PtMnSb | 2.0 |
常見磁性物質(zhì)在室溫下的磁光克爾轉(zhuǎn)角
聯(lián)系方式
郵箱:gulong@jinzhengmaoyiqi.com 地址:北京市大興區(qū)經(jīng)濟(jì)開發(fā)區(qū)金苑路2號(hào)1幢三層